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Abstract 
This paper focuses the image fusion of high-resolution satellite image and airborne light detection and ranging 

(LIDAR) data of urban area for improving classification accuracy. In urban area an image can be covered by 

numerous large buildings, skyscrapers, commercial and industrial structures, community parks, residential buildings, 

highways and bridges. Misclassification of shadows, water and roof gardens are major problem with such images. 

The various image fusion and classification technique in this paper were survived. 
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     Introduction 
Satellite images with high spatial resolution, such as 

those acquired using IKONOS-2, QuickBird-2, 

Geoeye-1, and WorldView-2, enable the superior 

detection of separate objects in complex urban areas 

compared with low or medium spatial resolution 

remote sensing data. However, the utilization of this 

type of data is challenging, in terms of the extraction 

and classification of image data. In particular, the 

building class typically found in land cover classes 

produces several problems for high spatial resolution 

images. First, the internal spectral variability of the 

building class increases, whereas the spectral 

variability between different classes decreases. 

Second, the building class exhibits a similar spectral 

reflectance to roads. Third, this class exhibits a 

diversity of spectral characteristics, such as gray, 

green, and red roofs. Fourth, the building class 

represents a generalization for a large set of man-

made structures that vary in 3-D size (width, length, 

and height) and structural details (shape, roof 

structure, and building materials). Combined with 

variable lightening conditions and satellite sensor 

orientation, these issues can present difficulties in the 

classification of high spatial resolution images. The 

building objects in an urban area assume different 

shapes in 2-D and 3-D space. They also contain 

different colored roofs, including red, green, white, 

and gray. Therefore, it is difficult to classify 

buildings using only satellite images with high spatial 

resolution. However, additional information, such as 

texture and spatial characteristics, can be used for 

classification. Recently, a significant amount of 

research has focused on fusing optical images and 

airborne LIDAR data as an alternative solution. 

Fusing different types of data can prove effective 

when one data type presents an advantage during a 

specific process because the extraction of building 

objects in airborne LIDAR data provides a higher 

level of accuracy than the extraction of building 

objects in optical images. The basic idea behind in 

this paper is focus for fusion of high-resolution 

satellite image and airborne LIDAR data of urban 

area and obtaining the detailed information of an 

image by removing shadows and water region. 

 

In this survey, a various image fusion and 

classification a technique performs preserves the 

image details effectively than other older technique. 

It provides a three-step process to minimize the 

misclassification of buildings and road objects. First, 

elevated road areas are detected in ground points, 

which are extracted for the generation of a digital 

terrain model based on statistical values. Second, 

building information is extracted from a satellite 

image through the output-level fusion of various data 

results. Third, supervised classification is conducted 

using a support vector machine for areas that lack 

elevated roads and buildings.  
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Related works  
X. Huang, L. Zhang and P. Li [1] proposed 

three step process. First, pixel shaped index (PSI) and 

structural feature set (SFS) is proposed to extract the 

statistical features of the direction-lines histogram. 

Second, some methods of dimension reduction, 

including independent component analysis, decision 

boundary feature extraction, and the similarity-index 

feature selection, are implemented for the pro- posed 

SFS to reduce information redundancy. Third, four 

classifiers, the maximum-likelihood classifier, back 

propagation neural network, probability neural 

network based on expectation– maximization 

training, and support vector machine.  

 

L. Bruzzone and L. Carlin [2] categorizes these 

techniques into two blocks 1) a novel feature-

extraction block that adaptively models the spatial 

context of each pixel according to a complete 

hierarchical multilevel representation of the scene 

and 2) a classifier, based on support vector machines 

(SVMs), capable of analyzing hyper dimensional 

feature spaces. The choice of adopting SVM-based 

classification architecture is motivated by the 

potentially large number of parameters derived from 

the contextual feature- extraction stage.  

 

Q. Yu, P. Gong, N. Clinton, G. Biging, M. 

Kelly and D. Schirokauer [3] built a hierarchical 

classification scheme and selected features for each 

of the broadest categories to carry out the detailed 

classification, which significantly improved the 

accuracy. Pixel-based maximum likelihood 

classification (MLC) with comparable features was 

used as a benchmark in evaluating our approach. The 

object based classification approach overcame the 

problem of salt- and-pepper effects found in 

classification results from traditional pixel-based 

approaches. The classification and regression tree 

algorithm (CART) is used to classify the vegetation.  

 

Y. Han, H. Kim, J. Choi and Y. Kim [4] 

proposed shape–size index (SSI) feature combines 

homogeneous areas using spectral similarity between 

one central pixel and its neighboring pixels. A spatial 

index considers the shape and size of the 

homogeneous area, and suitable spatial features are 

parametrically selected. The generated SSI feature is 

integrated with the original high resolution 

multispectral bands to improve the overall 

classification accuracy. A support vector machine 

(SVM) is employed as a classifier.  

 

J. Holmgren, A. Persson and U. Soderman [5] 

proposed three step process in tree species 

identification: (1) delineation of individual tree 

crowns using LIDAR data; (2) estimation of tree 

height and crown area using LIDAR data; and finally 

(3) identification of species of the delineated tree 

crowns by combining features extracted from LIDAR 

data with features from multi-spectral digital image 

data. Values from the multi-spectral images were 

extracted for each LIDAR crown segment and were 

then used for the classification. By using the camera 

position (X0, Y0, Z0) and orientation of each image, 

the LIDAR generated tree crown segments were 

mapped to the corresponding pixels in the multi-

spectral image. The extracted trees from the LIDAR 

data and the field measured trees were linked by 

using the tree positions estimated from LIDAR and 

as measured in the field. 

 

D. S. Lee and J. Shan [6] considered the LIDAR data 

and IKONOS images as independent multiple bands 

to conduct the classification. To do so, the LIDAR 

elevation data is first resampled to the same ground 

spacing interval and stretched to the same radiometric 

range as the IKONOS images. An un-supervised 

classification (clustering) based on the ISODATA 

algorithm is then used to determine a class schema of 

six classes: road, water, marsh, roof, tree, and sand. 

The supervised classifications are then performed 

respectively for the original IKONOS four-band 

images and the five-band combined images using the 

maximum likelihood classifier. 

 

M. Dalponte, L. Bruzzone, and D. Gianelle [7] 

proposed a new classification method by an analysis 

on the joint effect of hyper spectral and light 

detection and ranging (LIDAR) data for the 

classification of complex forest areas. They created 

three approaches 1) an advanced system for the joint 

use of hyper spectral and LIDAR data in complex 

classification problems; 2) an investigation on the 

effectiveness of the very promising support vector 

machines (SVMs) and Gaussian maximum likelihood 

with leave-one-out-covariance algorithm classifiers 

for the analysis of complex forest scenarios 

characterized from a high number of species in a 

multisource framework; and 

  

3) an analysis on the effectiveness of different 

LIDAR returns and channels (elevation and intensity) 

for increasing the classification accuracy obtained 

with hyper spectral images, particularly in relation to 

the discrimination of very similar classes. 

 

http://www.ijesrt.com/


[Vivekan, 3(11): November, 2014]   ISSN: 2277-9655 

                                                                                                 Scientific Journal Impact Factor: 3.449 

   (ISRA), Impact Factor: 2.114 
   

http: // www.ijesrt.com                  © International Journal of Engineering Sciences & Research Technology 

  [498] 
 

In [8], T. L. Erdody and L. M. Moskai (2010) for this 

research discrete-return airborne LIDAR and high 

resolution color near-infrared imagery was used to 

estimate canopy fuel metrics in a ponderosa pine and 

traditional mixed conifer forest of eastern 

Washington state. A double sampling approach using 

regression models was utilized for ease of use and 

broad-scale applicability using easily available 

analytical tools. LIDAR and imagery data were used 

to create regression models in 3 different 

combinations: LIDAR only, imagery only and 

LIDAR and imagery fusion. 

 

In [9], F. Rottensteiner, J.Trinder, S.Clode, and K. 

Kubik (2005) proposed a hierarchical technique for 

DTM generation and on the application of Dempster-

Shafer theory for classification. These methods are 

used for building detection from LIDAR data and 

multi-spectral images. 

 

In [10], G. W. Geerling, M. Labrador‐Garcia, J. G. P. 

W. Clevers, A. M. J. Ragas,and A. J. M. Smits (2007) 

proposed a pixel based method which fuse the CASI 

and LiDAR-derived datasets on a pixel level and 

authors compared the classification results of the 

fused dataset with those of the non-fused datasets. 

The aim is to combine IS and LIDAR data by data 

fusion at the pixel level to improve the classification 

accuracy of an eight-class and five-class set of 

natural vegetation types. The eight-class set 

represents the vegetation classes relevant for nature 

and river management, while the five-class set serves 

as a minimum set to estimate hydraulic resistance for 

river-management purposes. The classification results 

of the fused data are compared with classification 

results of IS only and LIDAR only of the same 

dataset. The maximum-likelihood classification 

(MLC) was chosen to classify the data.  

 

In [12], Y.Hu (2003) proposed an algorithms focus 

on automated extraction of DTMs, 3-D roads and 

buildings utilizing single- or multi-return LIDAR 

range and intensity data. First, DTM generation: An 

efficient framework has been developed to generate 

DTMs automatically for single- or multi-return range 

and intensity data in large datasets. The success of 

the algorithm is achieved by the effective 

combination of multiple component techniques 

including the hierarchical approach, smooth 

condition, data fusion, and interpolation methods. 

Second, road extraction: the integration of both the 

radiometry property of intensity data and the height 

information of the digital non-terrain model is highly 

feasible in reducing the misclassification of the road 

class. The reconstruction of grid road networks in 

urban areas is model driven, and is based on the 

global grid constraint. The road segment based 

hypothesis and verification strategy leads to efficient, 

robust, and automatic reconstruction of 3-D grid road 

models. Finally, building extraction: the boundary 

detection can reliably locate buildings from the 

height data and the vegetation support model. The 

building reconstruction can create prismatic models 

for flat roof buildings and polyhedral models for non-

flat roof buildings. 

 

In [13], Y. M. Kim, Y. D. Eo, A. J. Chang, and Y. I. 

Kim (2013) proposed a new mean planar filter (MPF) 

for segmentation that uses a 3×3 kernel to divide 

LIDAR data into planar and nonplanar surfaces. For 

extraction of ground points, a new method to extract 

additional ground points in forest areas is used, thus 

improving the accuracy of the DTM. The refinement 

process further increases the accuracy of the DTM by 

repeated comparison of a temporary DTM and the 

digital surface model. After the DTM is generated, 

building objects are extracted via a proposed three-

step process: detection of high objects, removal of 

forest areas, and removal of small areas. High objects 

are extracted using the height threshold from the 

normalized digital surface model. To remove forest 

areas from among the high objects, an aerial image 

and normalized digital surface model from the 

LiDAR data are used in a supervised classification. 

Finally, an area-based filter eliminates small areas, 

such as noise, thus extracting building objects. 
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In [14], J. C. Jimenez-Munoz, J. A. Sobrino, A. 

Gillespie, D. Sabol, and W.T. Gustafson (2006) 

shows a comparison between the land surface 

emissivity estimated with the Temperature and 

Emissivity Separation (TES) algorithm and from a 

simple approach using Normalized Difference 

Vegetation Index (NDVI) for ASTER images. In this 

paper two different methods have been applied to 

high spatial resolution and multispectral thermal data 

in order to retrieve land surface emissivity over an 

agricultural area: the NDVI method, which uses 

visible and near infrared data, and the TES data, 

which thermal infrared data. NDVI and Maximum-

Minimum Difference (MMD) threshold have been 

proposed to classify the pixels into bare soil, green 

grass and senescent vegetation. 

 

In [15], T. Schenk and B. Csatho (2002) describe two 

aspects of merging (fusion) aerial imagery and 

LIDAR data. The establishment of a common 

reference frame is an absolute prerequisite. Author 

solved this alignment problem by utilizing sensor-

invariant features. Such features correspond to the 

same object space phenomena, for example to break 

lines and surface patches. Matched sensor invariant 

features lend themselves to establishing a common 

reference frame. Feature-level fusion is performed 

with sensor specific features that are related to 

surface characteristics. 

 
Results and discussion 
The various image fusion and classification 

algorithms for improving an image quality in this 

survey were studied. So, in this survey, the output-

level fusion method effectively classified high-

resolution satellite images of an urban area by 

enhancing the separability between the buildings, 

elevated roads, and road classes. The distribution-free 

support vector machine (SVM) classifier provided 

much higher accuracies than the other classifiers 

investigated. In particular, the elevation channel of 

the first LIDAR return was very effective for the 

separation of species with similar spectral signatures 

but different mean heights, and the SVM classifier 

proved to be very robust and accurate in the 

exploitation of the considered multisource data. 

 

Conclusion 
In this work it has been concluded that the image 

fusion and classification technique is more valuable 

in tradition in digital image processing applications 

and we presented a survey of image fusion and 

improving classification accuracy of misclassified 

images from the output level fusion of high-

resolution satellite image and airborne LIDAR data 

of urban area. Even though there are several 

drawbacks with such image especially 

misclassification of shadow and water. So, a new 

technique for removing shadow and water region to 

improve image accuracy is proposed in my future 

work. 
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